

TACTICAL COMBAT CASUALTY CARE COURSE

MODULE 11: HEMORRHAGIC SHOCK FLUID RESUSCITATION IN TACTICAL FIELD CARE (TFC)

Committee on Tactical Combat Casualty Care (CoTCCC)

TCCC TIER 1 All Service Members **TCCC** TIER 2 Combat Lifesaver **TCCC** TIER 3 Combat Medic/Corpsman **TCCC** TIER 4 Combat Paramedic/Provider

TACTICAL COMBAT CASUALTY CARE (TCCC) ROLE-BASED TRAINING SPECTRUM **ROLE 1 CARE MEDICAL** NONMEDICAL PERSONNEL PERSONNEL PARAMEDIC ALL SERVICE COMBAT PROVIDER MEMBERS LIFESAVER COMBAT MEDIC/ CORPSMAN **YOU ARE HERE**

STANDARDIZED JOINT CURRICULUM

1 x TERMINAL LEARNING OBJECTIVES

- **14** Given a combat or noncombat scenario, perform fluid resuscitation as part of the management of hemorrhagic shock on a trauma casualty during Tactical Field Care in accordance with CoTCCC Guidelines.
 - **14.1** Identify progressive strategies, indications, and limitations of fluid resuscitation for hemorrhagic shock in Tactical Field Care.
 - 14.2 Identify appropriate fluid resuscitation techniques to prevent or treat hemorrhagic shock in Tactical Field Care.
 - **14.3** Identify the importance and advantages of early use of blood products in Tactical Field Care.
 - **14.4** Identify the indications, contraindications, and administration methods of low-titer group O whole blood in Tactical Field Care.
 - **14.5** Identify the considerations, indications, contraindications, and administration methods of fresh whole blood in Tactical Field Care.
 - **14.6** Identify the indications, contraindications, and administration methods of plasma in Tactical Field Care.
 - 14.7 Identify the indications, contraindications, and administration methods of packed red blood cells in Tactical Field Care.
 - **14.8** Demonstrate administration of blood products to a trauma casualty in Tactical Field Care.
 - a. EldonCard®
 - b. Donor blood product collection
 - c. Administration of blood products

14.9 Identify the signs, symptoms, considerations, and treatment strategies of blood transfusion complications.

9 x ENABLING LEARNING OBJECTIVES

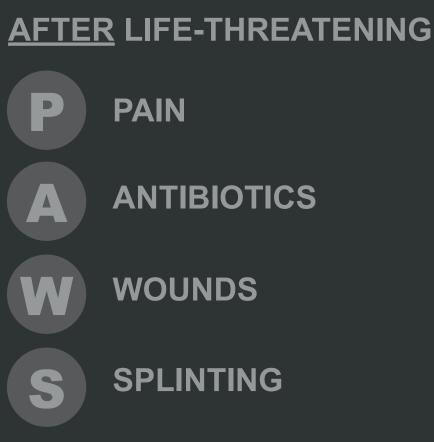
M

п

MARCH PAWS

LIFE-THREATENING

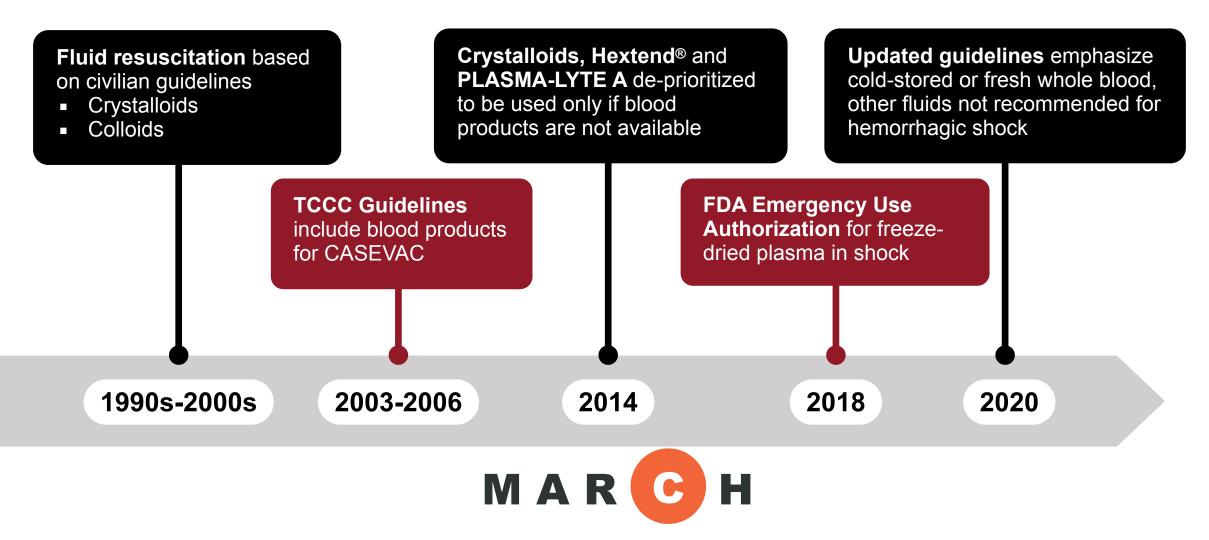
MASSIVE BLEEDING

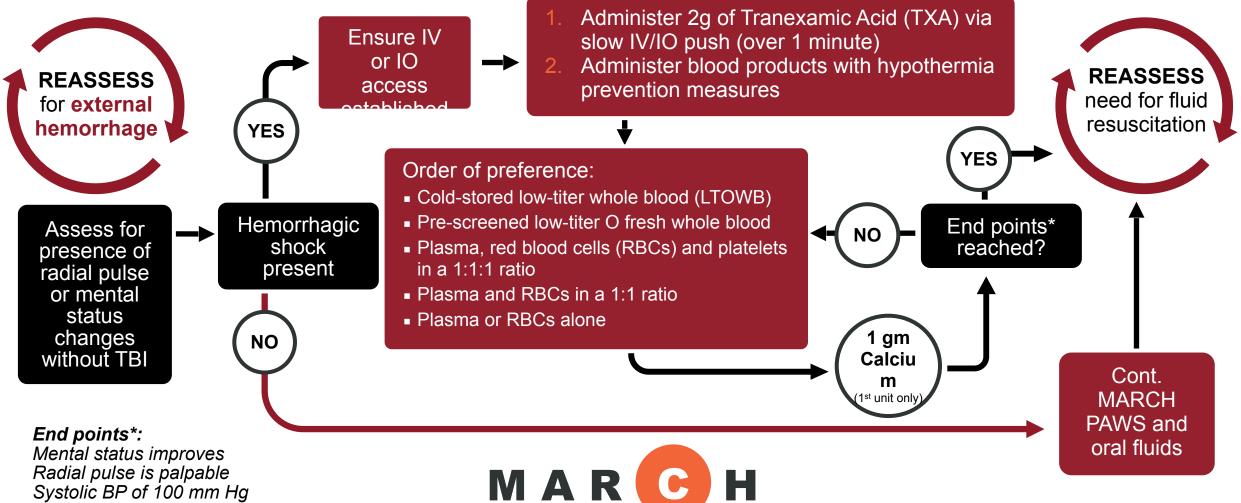

AIRWAY

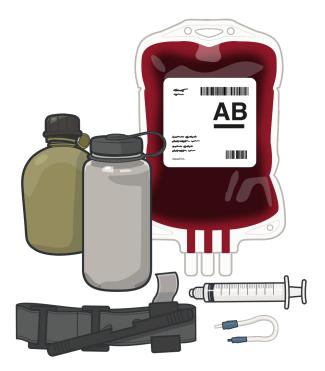
RESPIRATION (Breathing)

#1 Priority

CIRCULATION


HYPOTHERMIA / HEAD INJURIES


INTRO TO FLUID RESUSCITATION FOR SHOCK


PROGRESSIVE STRATEGIES FOR FLUID RESUSCITATION IN HEMORRHAGIC SHOCK

TECHNIQUES FOR PREVENTION AND TREATMENT OF HEMORRHAGIC SHOCK

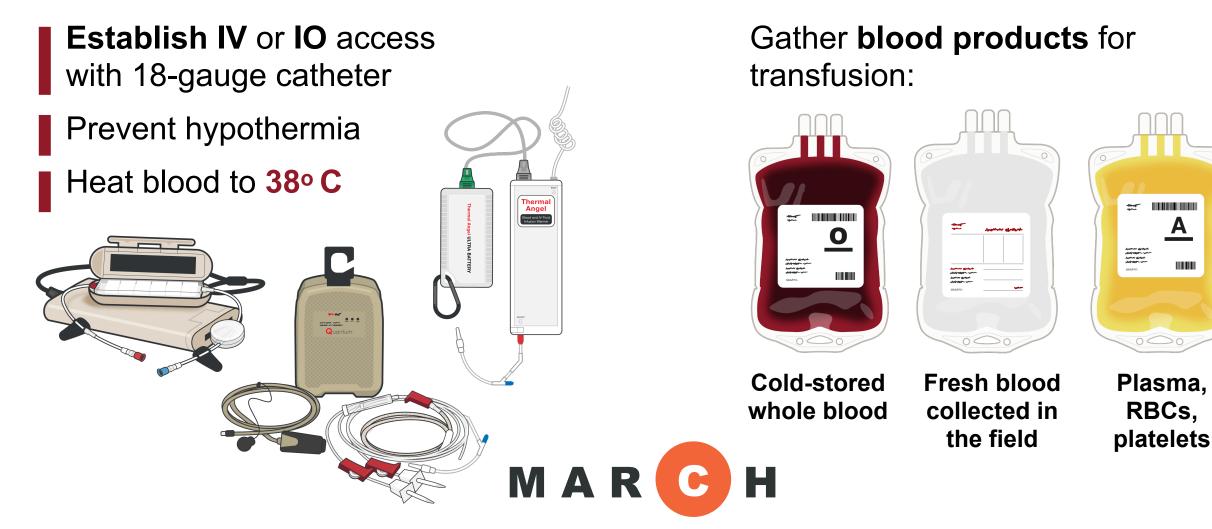
Oral rehydration, if the casualty can swallow, is appropriate and recommended

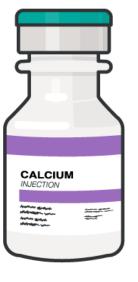
- Dehydration is a risk during treatment and evacuation
- Risk of emesis and aspiration is very low

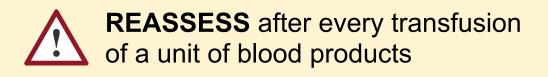
Consider placing saline lock, if tactically feasible

Fluid selection priorities are:

- Cold-stored low-titer O whole blood
- Pre-screened low-titer O fresh whole blood
- Plasma, red blood cells (RBCs) and platelets in a **1:1:1 ratio**
- Plasma and RBCs in a 1:1 ratio
- Plasma or RBCs alone


Best prevention of hemorrhagic shock is control of all sources of bleeding


APPROPRIATE TECHNIQUES FOR TREATMENT OF HEMORRHAGIC SHOCK



APPROPRIATE TECHNIQUES FOR TREATMENT OF HEMORRHAGIC SHOCK (CONT.)

RISK OF HYPOCALCEMIA from citrate binding to endogenous calcium

Replace with 1 gm Ca++

End points for **fluid resuscitation**:

A palpable radial pulse

Improved mental status

Systolic BP of 100 mm Hg

More is not necessarily better

Potential for clot disruption from higher pressures

Blood products are a valuable resource to conserve, when possible

CALCIUM ADMINISTRATION

CONTRAINDICATIONS:

Hypophosphatemia

Renal calculi

DOSAGE(S):

Calcium **1 gram** after the first unit of blood has been administered Ventricular fibrillation Hypercalcemia

ROUTE(S):

Calcium is available in IV or IO form

INDICATIONS:

For use after blood product transfusions

Use cautiously in:

Digitalized patients

Patients with sarcoidosis

Renal or cardiac disease

Respiratory acidosis

Respiratory failure potential

CALCIUM ADMINISTRATION cont.

POTENTIAL SIDE EFFECTS:

Tingling sensations, headache, irritability, weakness, syncope with rapid IV injection, mild decrease in blood pressure, vasodilation, bradycardia, arrhythmias, rebound hyperacidity, nausea, polyuria, renal calculi, hypercalcemia, and local reactions

DRUG INTERACTIONS:

Decreased bioavailability with atenolol, fluoroquinolones and tetracyclines, calcium channel blockers decrease calcium effectiveness, cardiac glycosides increase digitalis toxicity, thiazide diuretics cause a risk of hypercalcemia

ONSET/PEAK/DURATION:

Immediate/Immediate/1-2 hr

TACTICAL CONSIDERATIONS:

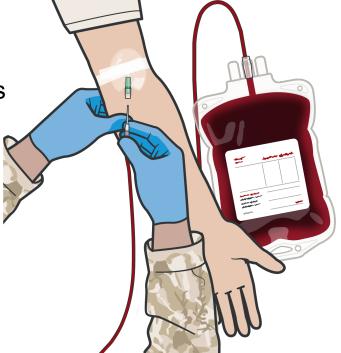
Administer one gram of calcium as either 30 ml of 10% calcium gluconate or 10 ml of 10% calcium chloride; immediately after the first transfused blood product. Monitor calcium chloride infusion closely as severe necrosis and skin sloughing can occur if peripheral IV extravasates.

Module 11: Hemorrhagic Shock Fluid Resuscitation in TFC

IMPORTANCE AND ADVANTAGES OF EARLY USE OF BLOOD PRODUCTS

502 U.S. military combat casualties in Afghanistan (2012-2015): Time to initial blood product transfusion associated with **reduced** 24-hour and 30-day **mortality**

Ensure processes to move cold-stored LTOWB

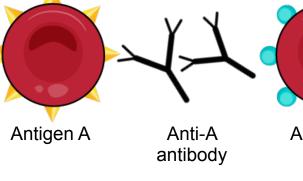

Electric-powered coolers at distribution sites

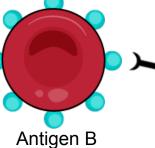
Battery-operated containers for field use

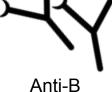
Prepare alternate to cold-stored LTOWB

Prescreen unit members for potential donors

INDICATIONS AND ADVANTAGES OF USING LOW-TITER GROUP O WHOLE BLOOD


The preferred fluid for hemorrhagic shock resuscitation is **cold-stored low-titer O whole blood (LTOWB)**


Low-titer type O whole blood


Titers refer to anti-A/anti-B in plasma

WWII experience was mild reactions with titers >512

Current threshold for low titer <256

antibody

Advantages of **cold-stored LTOWB**:

- Tested for diseases (FDA requirement)
- Titers and leukocyte reduction
- Ready for immediate transfusion
- Whole blood better than three-component replacement in at least one study

METHODS OF TRANSFUSING LOW-TITER GROUP O WHOLE BLOOD

Prior to fluid resuscitation ensure:

External Hemorrhage is controlled

IV or **IO** line with fluid is in place and functioning properly

- Begin transfusion within **5 min** of starting the process
 - Administer **1 gm of calcium** after the first unit
 - Assess for and treat blood transfusion reactions:
 - Anaphylactic reaction (hives, itching, stridor/shortness of breath, and/or hypotension
 - Acute hemolytic reaction

(arm pain, chest pain, back pain, nausea, disseminated intravascular coagulation, and/or fever)

Blood filters remove small clots that develop during collection and storage

INDICATIONS AND METHODS OF USING FRESH WHOLE BLOOD

If cold-stored LTOWB is not available, utilize Pre-screened low titer O fresh whole blood

Ideally, fresh whole blood donors are pre-screened

- Known low titers
- No transmissible diseases

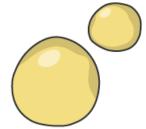
Group-specific (A-A, B-B), although up to 4% inaccuracy

POSSIBLE ADVANTAGES

- Availability even when cold chain is not in place (or cold stores exhausted)
- Degree of hypothermia during transfusion may be less than cold-stored LTOWB

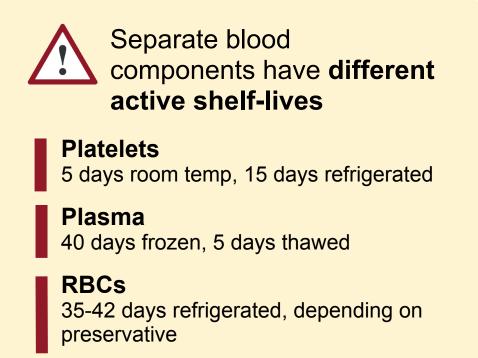
POTENTIAL ISSUES

- Time to collect blood may delay transfusion
- Unit members unavailable while donating



INDICATIONS AND METHODS OF USING RED BLOOD CELLS

In the absence of whole blood, either cold-stored or fresh, packed red blood cells (RBCs), platelets and plasma in a 1:1:1 ratio should be used



1 part **RBCs** : 1 part **platelets** :

1 part **plasma**

If three component therapy isn't available, then: Plasma and RBCs in a 1:1 ratio if unavailable then: Plasma or RBC's alone

TRANSFUSION COMPLICATION IDENTIFICATION AND MANAGEMENT STRATEGIES

Monitor all transfusions for complication and adverse reactions:

Anaphylaxis – life-threatening allergic reaction Stridor/SOB Hypotension Early signs – hives, itching

STOP TRANSFUSION

Initiate NS or LR infusion

- 0.3 ml of 1:1000 epinephrine IM
- 25 mg of diphenhydramine IM or slow IV/IO push
- If available, consider 10-40 mg methylprednisolone slow IV/IO push

Acute hemolysis – rupture of RBCs Flank, chest, arm or back pain Fever Disseminated intravascular coagulation Early sign – nausea

STOP TRANSFUSION

Initiate NS or LR infusion

25 mg of diphenhydramine IM or slow IV/IO push

EPINEPHRINE ADMINISTRATION

DOSAGE(S):

0.3 mg (3 ml of 1:1000 solution), repeated every 5 to 10 minutes as necessary

ROUTE(S):

IM or subcutaneous

INDICATIONS:

Emergency treatment of anaphylaxis or allergic reactions.

CONTRAINDICATIONS:

None

POTENTIAL SIDE EFFECTS:

Anxiety, restlessness, tremor, weakness, dizziness, sweating, palpitations, pallor, nausea and vomiting, headache, disorientation, and tachycardia

EPINEPHRINE ADMINISTRATION cont.

DRUG INTERACTIONS:

Antihypertensives reduce the pressor effects of epinephrine, thyroid hormones, antihistamines and some anti-arrhythmic medications increase its arrhythmogenic effects

ONSET/PEAK/DURATION:

15-30 sec (IM<subcutaneous)/ 20 sec to 4 min/5-10 min

TACTICAL CONSIDERATIONS:

- Adult EpiPens® deliver the recommended 0.3 mg IM dose
- Casualties in hemorrhagic shock have poor tissue perfusion to their extremities reducing the delivery of epinephrine; use large muscle groups closest to the torso (in order of preference: thigh > deltoid > gluteal).

DIPHENHYDRAMINE

ADMINISTRATION

DOSAGE(S):

25 mg initial dose, may consider 50 mg based on clinical situation; repeat q 4-6 hr prn; max daily dose 300 mg

ROUTE(S):

IM or slow IV/IO push (over one minute)

INDICATIONS:

Emergency treatment of anaphylaxis or allergic reactions

CONTRAINDICATIONS:

Documented hypersensitivity to diphenhydramine, breastfeeding mothers, use in pregnancy if clearly needed

POTENTIAL SIDE EFFECTS:

Sedation/somnolence/sleepiness, drowsiness, unsteadiness, dizziness, headache, rare extrapyramidal effects, tremor, or convulsions

DIPHENHYDRAMINE ADMINISTRATION cont.

DRUG INTERACTIONS:

Accentuates effects of other medications that cause drowsiness or decreased level of consciousness (sedatives, hypnotics)

ONSET/PEAK/DURATION:

10 sec-20 min (IV<IO<IM)/ 15 min-2 hr/2-6 hr

TACTICAL CONSIDERATIONS:

There is no evidence to support H1antihistamines alone in emergency management of anaphylaxis – diphenhydramine should only be used as an adjunct to epinephrine during anaphylaxis management; the slower onset and longer duration may help sustain effects of successful treatment.

- Useful for minor reactions that are not life-threatening
- Casualty weapons, communications, and sensitive equipment should be secured.

METHYLPREDNISOLONE ADMINISTRATION

DOSAGE(S):

10-40 mg

ROUTE(S):

Slow IV or IO push (over one minute)

INDICATIONS:

Blood product transfusion anaphylactic reaction

CONTRAINDICATIONS:

Systemic fungal infections and known hypersensitivity (prior allergic reaction); potential benefits may warrant use in pregnant women despite potential risks if the alternative is worse

POTENTIAL SIDE EFFECTS:

Sodium retention, fluid retention, potassium depletion, hyperglycemia, increased liver function tests, muscle weakness, impaired sweating, pancreatitis, esophagitis, urticaria or allergic reactions

METHYLPREDNISOLONE ADMINISTRATION cont.

DRUG INTERACTIONS:

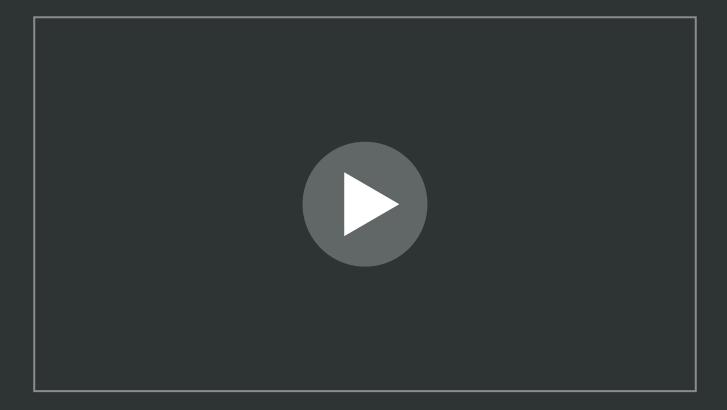
Accentuates effects of other medications that cause drowsiness or decreased level of consciousness (sedatives, hypnotics)

ONSET/PEAK/DURATION:

Immediate/1-2 min/1 hr

TACTICAL CONSIDERATIONS:

Administer 10-40 mg IV or IO, after first administering epinephrine and diphenhydramine, when treating an anaphylactic reaction from a blood product transfusion.

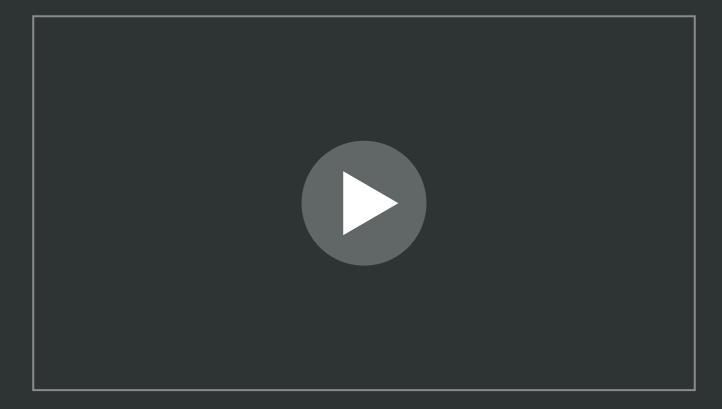

Module 11: Hemorrhagic Shock Fluid Resuscitation in TFC

CMC

TCCC

ADMINISTRATION OF BLOOD PRODUCTS IN TACTICAL FIELD CARE

Video can be found on deployedmedicine.com


Module 11: Hemorrhagic Shock Fluid Resuscitation in TFC

CMC

TCCC

ADMINISTRATION OF COLD STORED BLOOD PRODUCTS IN TACTICAL FIELD CARE

Video can be found on deployedmedicine.com

INDICATIONS AND METHODS OF USING PLASMA

Freeze-dried plasma (FDP)

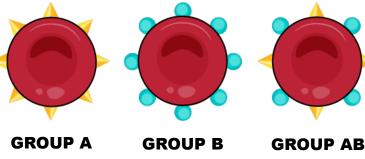
- Developed in 1930s
- Used in WWII and Korea
- Stopped because of disease transmission
- Continued by other nations
- Rekindled interested by US military due to problems with access to whole blood at battlefront
- Approved for use in hemorrhagic shock in recent years

PLASMA

MAR

- Provides fibrinogen and hemostatic factors
- Although best with other blood products, can be used alone
- **FDP** can be stored without refrigeration
- **FDP** reconstituted in vials must be administered through vented tubing, but with collapsible bags standard blood tubing can be used

BLOOD TYPING


JOINT TRAUMA SYSTE

Surface markers (antigens) determine blood groups/types

A & B antigens determine ABO status

Rh antigen also a major marker

Minor markers require more advanced lab resources, but not tactically important

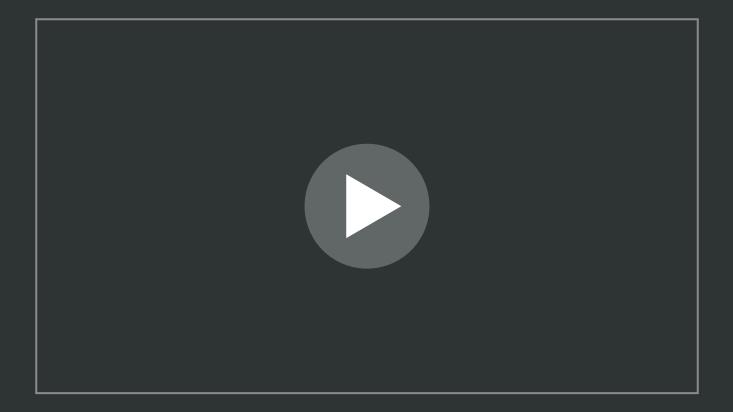
GROUP O

MAR

EldonCard®

- Antigen-impregnated surface
- Donor/casualty blood reacts with surface antigens
- Reaction/non-reaction indicates ABO and Rh status

REF 304-07


000.

ELDONCARD® 2511

ELDONCARD TECHNIQUES IN TACTICAL FIELD CARE

Video can be found on deployedmedicine.com

Module 11: Hemorrhagic Shock Fluid Resuscitation in TFC

BLOOD COLLECTION

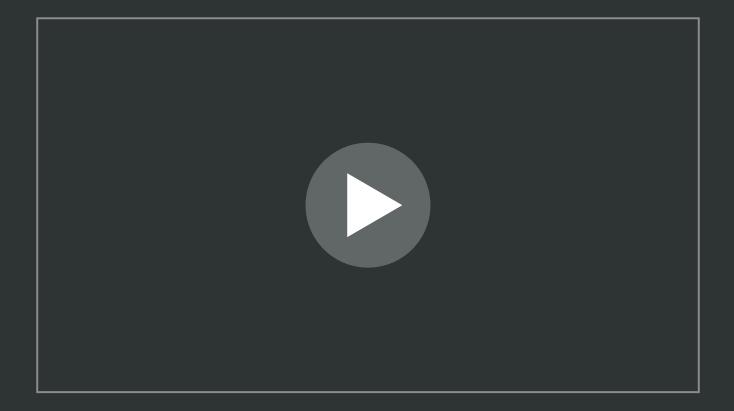
Considerations in collecting blood

- Collection bags have needle attached (16-gauge)
- Lower collection bag below level of the heart
- Gently shake or agitate bag to mix citrate anticoagulants
- Don't overfill the bag
- Clamp and then tie off the collection tubing when bag is full

Donors experience mild decline in oxygen-carrying capacity, but no decrease in performance or cognitive function after 1 unit of blood donation

MAR

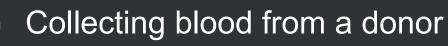
Methods to determine bag is full


- 6.5-inch beaded cable tie
- 6.5-inch zip tie
- Fold and clamp bottom 1-1¹/₂ inches of the bag
- Parachute 550 cord cut at 10 inches wrapped around center

Module 11: Hemorrhagic Shock Fluid Resuscitation in TFC

BLOOD DONOR COLLECTION IN TACTICAL FIELD CARE

Video can be found on deployedmedicine.com



SKILL STATION

Fluid Resuscitation in Hemorrhagic Shock

Blood-typing using an EldonCard

Administering freeze-dried plasma

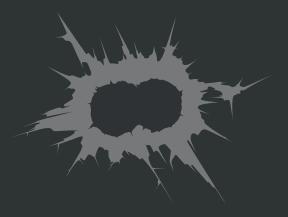
Transfusing blood products to a casualty

SUMMARY

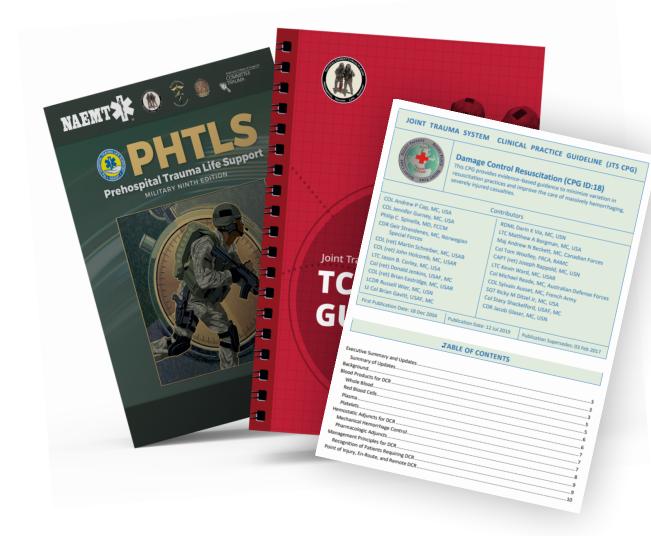
- Early resuscitation with cold-stored low-titer type O whole blood
- Progressive strategies for fluid resuscitation
- Importance of early administration of blood products
- Indications and techniques for blood product administration
- Identification and management of blood transfusion complications
- Blood-type determination with EldonCards
- Donor blood collection techniques
- Blood administration skills training
- Blood typing and blood collection skills training

CHECK ON LEARNING

- What signs of hemorrhagic shock are indications that fluid resuscitation is needed?
 - What is the preferred product for hemorrhagic fluid resuscitation?
- When should calcium be administered during fluid resuscitation?
- When should fluid resuscitation be discontinued?


What is an advantage of freeze-dried plasma?

Module 11: Hemorrhagic Shock Fluid Resuscitation in TFC


ANY QUESTIONS?

REFERENCES

TCCC: Guidelines

by JTS/CoTCCC

Updated regularly – latest edition dated 5 November 2020

These guidelines are the result of decisions made by the Committee on Tactical Combat Casualty Care as they explore evidence-based research regarding best practices

PHTLS: Military Edition, Chapter 25

by NAEMT Prehospital Trauma Life Support, Military Ninth Edition

Damage Control Resuscitation CPG

Joint Trauma System Damage Control Resuscitation (CPG ID:18), Joint Trauma System Website